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A B S T R A C T

Background: The affinities of DNA binding proteins for target sites can be used to model the regulation of gene
expression. These proteins can bind to DNA cooperatively, strongly impacting their affinity and specificity.
However, current methods for measuring cooperativity do not provide the means to accurately predict binding
behavior over a wide range of concentrations.
Methods: We use standard computational and mathematical methods, and develop novel methods as described
in Results.
Results: We explore some complexities of cooperative binding, and develop an improved method for relating in
vitro measurements to in vivo function, based on ternary complex formation. We derive expressions for the
equilibria among the various complexes, and explore the limitations of binding experiments that model the
system using a single parameter. We describe how to use single-ligand binding and ternary complex formation in
tandem to determine parameters that have thermodynamic relevance. We develop an improved method for
finding both single-ligand dissociation constants and concentrations simultaneously. We show how the co-
operativity factor can be found when only one of the single-ligand dissociation constants can be measured.
Conclusions: The methods that we develop constitute an optimized approach to accurately model cooperative
binding.
General significance: The expressions and methods we develop for modeling and analyzing DNA binding and
cooperativity are applicable to most cases where multiple ligands bind to distinct sites on a common substrate.
The parameters determined using these methods can be fed into models of higher-order cooperativity to increase
their predictive power.

1. Introduction

Cooperative binding by multiple ligands to a substrate is ubiquitous
in biological systems. Methods of detecting and analyzing cooperative
binding have been well developed over time at a theoretical level.
Cooperative binding occurs when the binding of a first ligand to a
substrate increases (or decreases) the complex's affinity for subsequent
ligands. The phenomenon was first observed and modeled in the oxygen
and hemoglobin system, where the binding of one oxygen to un-
saturated hemoglobin increases the affinity for the next oxygen [1]. Hill
proposed a one-step cooperative binding model,

+ →A ia Aai

where A is the binding substrate, in this case hemoglobin, a is the li-
gand, oxygen, and i is the total number of oxygens that bind co-
operatively. Using the equilibrium (association) constant for the reac-
tion, Ka, gives rise to the Hill equation for the fractional occupancy, θ:
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Applying the logarithm gives a linearized form, and allows de-
termination of the Hill number, i, from measured [a] and θ. While
computationally and experimentally accessible, the Hill model has
numerous pitfalls, and a Hill plot can obscure important cooperative
properties of a system (e.g., see Fig. 1 and C, D in Peacock and Jaynes
[2]).

The shortcomings of the Hill model in describing the hemoglobin
and other systems motivated a slew of subsequent models [3], including
Adair-Klotz, KNF, and MWC models [4,5]. Generally, any binding
model for a given system may be expressed as a binding polynomial or
partition function [3,6,7]. Any specific binding model can be related to
the terms and parameters of the binding polynomial. Some authors
have introduced theoretically and pedagogically useful formalism into
the binding polynomial, which aid in relating the general parameters to
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specific binding models [8–11].
In recent decades, the importance of cooperativity in eukaryotic

transcription regulation has been revealed [12–21]. Cooperativity
among transcription factors and cofactors is crucial for achieving nu-
cleic acid binding specificity in vivo, allowing a relatively small group of
transcription factors to combinatorially regulate large genomes (see e.g.
[12]). Using in vitro approaches such as gel shifts (EMSA, or electro-
mobility shift analysis) of labeled oligonucleotides (oligos) by purified
binding proteins and surface plasmon resonance (SPR), cooperativity
has been revealed and quantified in a few cases, serving as conceptual
models [22–29]. While SPR can provide more detailed interaction in-
formation than EMSAs, it is limited to quantitative analysis of co-
operativity for multiple binding sites of a single protein (although it can
provide qualitative information on heteromultimeric binding) [30–32].
However, these practical approaches have not been integrated fully into
the theoretical framework used for other substrate-ligand interactions.
There are many challenges to elucidating cooperative interactions
among transcription factors. Conditions in nuclei are difficult to mea-
sure and reproduce. All the protein domains that affect function must
be included, sometimes making protein purification difficult. Nucleo-
tide sequence flanking the core binding motifs that are sufficient to
capture any effects that they may have on binding site shape should
also be included [33–35]. Additional complexities are involved when
relating in vitro binding data to transcriptional readouts. For example,
cooperative interactions involving chromatin templates, which may
occur through cooperative displacement and modification of nucleo-
somes, are typically not measured in such studies. Despite the inherent
limitations with in vitro systems, computational and bioinformatic ap-
proaches have had some success in describing cooperativity (see e.g.
[24,36]) using high-throughput methods. Such approaches often con-
tinue to rely on previously analyzed, cooperating proteins to entrain the
system and provide meaningful quantitative output [37].

Models oriented toward allosteric binding such as MWC can quan-
tify the various conformers of the complex based on the free (unbound)
concentrations of each ligand [4,5]. This is useful when measuring free
ligand is relatively straightforward, as for the partial pressure of oxygen
in the hemoglobin system or the concentration of Ca2+ in the calmo-
dulin system. However, the analysis of transcriptional regulation may
involve the measurement of one or more cooperative complexes as a
function of total added ligand. For this context, where free ligand can
be very difficult to measure, quantitative, experimentally accessible
models have not been fully developed. Further, saturation binding may
require high ligand concentrations, which are attainable for ligands like

O2 and Ca2+, but can result in aggregation and precipitation of protein
ligands. When the binding substrate is DNA or RNA, high ligand con-
centration may also produce significant off-target (i.e., non-specific)
binding. Finally, saturation binding measurements can require the
production of large quantities of purified protein, which can be a
technical limitation.

Here, we revisit the use of Hill plots to quantify cooperativity, and
illustrate key shortcomings as a motivation to develop a more practical
and descriptive approach. We develop this approach within a broad
theoretical framework applicable to any system involving multiple li-
gands binding to two or more distinct sites on a substrate, while fo-
cusing on the practical application of cooperative binding to DNA by
proteins. In that context, we develop methods for quantifying co-
operativity by two ligands binding to distinct sites, first measuring in-
dividual binding constants and then a cooperativity factor (previously
referred to as the cooperativity parameter in, e.g., [22]). This provides
the means to predict the binding behavior of cooperating proteins over
the full range of concentrations. Motivated by recent identification and
analysis of cooperative binding sites for Engrailed with its partner
complex Extradenticle/Homothorax (Exd/Hth) [38], we devise a novel
method for determining binding constants for individual ligands using
competition assays [39], which we show has significant advantages
over saturation binding assays. We go on to devise a method to find the
cooperativity factor and the second equilibrium constant when only one
of the two equilibrium constants can be accurately measured using
single-ligand binding. Finally, because the cooperativity factor is ther-
modynamically meaningful, once it has been determined for pairwise
interactions, we show how it can be employed to model more complex
systems involving multiple components.

2. Materials &methods

All computational methods used here broadly follow the same three
steps, with different parameters and inputs. First, a binding system is
defined with equilibrium constants and total concentrations of each
component. Second, the equations relating these equilibrium constants
and total concentrations to concentrations of individual species are
specified. Third, these equations are manipulated and combined, either
manually or using a computer algebra system (Wolfram Mathematica
10.4.0), to relate the desired quantities. Lastly, numerical values are
substituted for parameters and the desired outputs computed and/or
graphed. The graphs for Figs. 1–3 were produced using the Mathema-
tica notebooks included as supplements. Microsoft Excel and Pacific

Fig. 1. Barriers to determining cooperativity from Hill
plots. A: Model for cooperative binding to AB (substrate
with two distinct binding sites) by ligand a. The ternary
complex AaBa can dissociate in two ways, losing a from
either the A or the B site first. Defining the Kd's for the
ternary complex as KA/n and KB/n reduces the number of
variables, because, from the definitions of the Kd's (below
the line), KA divided by KA/n gives the same thing as KB

divided by KB/n. B. Hill plots for two binding sites with the
same or different Kd's. From the model in A, the ratio
(fractional occupancy) / (1 − fractional occupancy), which
is (KA + KB + 2n[a])[a] / {2KAKB + (KA + KB)[a]} (de-
rived in Fig. 1A of Peacock and Jaynes [2]), was used to
generate Hill plots. Concentration units (for Kd's and [a])
are arbitrary. The case where KA = KB = 5 and n = 25.5 is
shown as a solid blue curve, along with a tangent line
(purple) at the point of maximum slope. Also shown are:
the same equivalent sites, but with negative cooperativity
(n= 0.04, dashed blue), and the case of two non-equiva-
lent sites (KA = 5, KB = 500), either with positive co-
operativity (n = 25.5, solid red) or with no cooperativity
(n= 1, dashed red). Note the similarity in shape of the

plots for equivalent sites with negative cooperativity and for non-equivalent sites without cooperativity. Also note that for two non-equivalent sites, when n approaches the value
(KA + KB)2 / 4KAKB (derived in Fig. 1A of Peacock and Jaynes [2]), the plot approaches a straight line of slope 1, which is indistinguishable from equivalent sites with no cooperativity.
Thus, without prior knowledge that sites are equivalent, Hill plots are at best ambiguous for identifying cooperativity.
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Tech Graphing Calculator 4.0 were used to generate graphs for Fig. 4.
Inkscape and Adobe Photoshop were used to compose figures.

In Fig. 1, the Hill plots are derived for the system shown in Fig. 1A.
Using the equilibrium equations (Fig. 1A, lower) and conservation of
mass equations, an expression for the total fractional occupancy as a
function of free ligand concentration ([a]) and the parameters KA, KB

and n was derived (manually in Fig. 1A of Peacock and Jaynes [2];
using Mathematica in Fig_1.nb within Supplemental_Mathematica_no-
tebooks). By definition, a Hill plot shows θ/(1−θ) as a function of [a]
on a log-log plot, producing Fig. 1B. The maximum slope was calculated
by taking the derivative at the point of 1/2 occupancy (always appro-
priate for 2 sites, see below).

In Fig. 2, a more complex system is described with two distinct li-
gands, a and b. Again using the relevant equilibrium and conservation
equations, an equation describing the concentration of ternary com-
plex, [AaBb], as a function of total ligand concentration [a]T and
parameters was derived (by hand in Fig. 2A of Peacock and Jaynes [2];

using Mathematica in Fig_2.nb within Supplemental_Mathematica_no-
tebooks). Illustrative parameter values were selected to demonstrate
the relevant concepts, and each curve calculated and plotted. Points of
half-maximum occupancy were found by calculating the limit of [AaBb]
as [a]T approaches positive infinity (see Fig. 2B in Peacock and Jaynes
[2]).

In Fig. 3A, B, a competition system is treated, consisting of the
system of Fig. 2 plus unlabeled competitor, UAB, with its own co-
operativity and equilibrium parameters. This system is used to describe
3 experiments [38], each with the same labeled DNA oligo (B1a),
competing with an unlabeled oligo, either A2a, B1b, or B1a itself. Each
experiment uses the same set of equations, but with different parameter
values, chosen to approximate a situation encountered experimentally
[38]. For Fig. 3A, the equations were solved to find [AaBb] as a function
of added competitor [UAB]T. For Fig. 3B, the concentrations of com-
plexes formed on the unlabeled competitor are solved for as a function
of [UAB]T. In Fig. 3C, the three DNAs are considered without

Fig. 2. Two cooperating proteins binding to two different sites. A: schematic of binding equilibria. Either protein can bind first. The upper path from left to right represents initial
binding by protein b. The equilibrium concentration of the ABb single-protein complex is governed by its Kd, KB. It can then bind protein a to form the ternary complex AaBb. The
alternative pathway to the ternary complex is similarly diagrammed on the left. As the definitions of the various dissociation constants below show, not all 4 are independent. If we divide
KB by the Kd that governs the dissociation of b from AaBb, we get the same quantity that we get if we divide KA by the Kd that governs the dissociation of a from AaBb. It is therefore
convenient to define this ratio as the cooperativity factor n. B: graphs of [AaBb] as a function of increasing [a]T, holding [b]T constant. For all graphs, [AB]T = 1, [b]T = 2, and KB = 500,
while KA's and cooperativity factors vary. The apparent Kd (based on a single-site model, see Fig. 2B in Peacock and Jaynes [2]) is the [a] at the point of half-maximal [AaBb], which is
marked by a dot for each curve. Note that the relative amounts of ternary complex depend strongly on [a]T. The green curve, which has the lowest apparent Kd (0.68), actually shows the
lowest [AaBb] at high [a]T. This is due to its relatively low n, which determines the [AaBb] at saturation with protein a, independent of KA. The black curve crosses the red curve, and also
shows less binding at high [a]T due to a lower n. The blue curve does not cross the red curve, and has a lower [AaBb] at all values of [a]T, despite having a lower apparent Kd! So, a
ranking of apparent Kd's from this type of experiment is not predictive of relative ternary complex formation overall. Derivations of expressions relating [AaBb] to [a]T (and to [a], [AaB],
and [AB]) are given in Fig. 2A of Peacock and Jaynes [2]. Derivations of expressions for [AaBb]max and for finding the apparent Kd are given in Fig. 2B of Peacock and Jaynes [2]. C:
relative ternary complex formation can be qualitatively different depending on the fixed [b]T chosen for the experiment. The two pairs of curves (upper and lower) represent [AaBb]
formed on two sites (red and dark blue) as a function of increasing [a]T, differing only in the fixed [b]T. Note that at the lower [b]T, the site represented by the dark blue curve
(KA = 5975, KB = 400, n = 113) forms more ternary complex throughout most of the experimental range, while at the higher [b]T, the site represented by the red curve (KA = 90,000,
KB = 2808, n = 7000) forms more over the entire range. This illustrates another limitation of modeling cooperative binding using a single parameter. NOTE: Concentration units are not
specified, because in all cases, these units (which includes the concentrations of ligands and substrate, as well as Kd's) can be factored out of the governing equations, and do not affect the
shapes of curves, or any of the conclusions.
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competitor, with fixed concentrations of both DNA and ligand b, and
with increasing [a]T. This system is identical to that of Fig. 2, here
solved for [AaB], [ABb] and [AaBb] in terms of [a]T. For complete
methods, see Fig_3.nb within Supplemental_Mathematica_notebooks.

In Fig. 4A, a simple competition system is considered, consisting of a
substrate DNA oligo (A) binding a ligand (a), in competition with an

identical unlabeled DNA, UA. Solving the governing equations of this
system, [Aa] is plotted as a function of [UA]T for a given set of para-
meters (see also Fig. 4A in Peacock and Jaynes [2]).

In Fig. 4B, the results of competition and saturation binding ex-
periments were computationally simulated under 7 sets of parameter
values ([A]T, KA, and [a]T). To simulate a competition experiment, the

Fig. 3. Competition curves measuring ternary complex have limited predictive power. Concentrations and Kd's are in nM. A: Ternary complex as a function of competitor. For each
curve, the [AaBb], labeled ternary complex, is graphed as a function of an unlabeled competitor. The lower (black) curve is self-competition by the high-affinity site (B1a [38]), where the
unlabeled competitor, UAB, is the same DNA sequence as the labeled binding site, AB. The other two curves show competition with two binding site oligos that have very different Kd's and
cooperativity factors (n), yet compete similarly for ternary complex formation by labeled B1a oligo. Note that self-competition is much more effective at all concentrations shown than is
competition by either of the other oligos, while the other two oligos compete very similarly over a wide concentration range.
B: Forms of competitor oligo in the competition experiment. Each graph shows the 3 bound forms for one of the competitor oligos. In each case, the solid line shows [AaBb], the dashed
line shows [AaB], and the dotted line shows [ABb]. The upper panel shows the less cooperative low-affinity site (B1b, blue), the middle panel shows the more cooperative low-affinity site
(A2a, red), and the lower panel shows the high-affinity site (B1a, black). The left and right sections of each curve show two different ranges of [a]T, on two different scales. Note that at the
higher concentrations of competitor, B1b forms mostly single-protein complexes, while A2a forms mostly ternary complex, reflecting its much higher cooperativity. At concentrations well
beyond the range shown, all of each protein is incorporated into single-protein complexes, as the proteins are distributed over a vast excess of oligo. For oligo B1b (blue), we see the
approach to this limit, while for oligo A2a (red), this approach is beyond the range shown.
C: Concentrations of complexes as a function of [a]T, holding [b]T constant (no competitor). Using the same oligos as in A (and B), the concentrations of the various protein-containing
forms are graphed for a similar experiment as in Fig. 2. The left and right sections of each curve show two different ranges of [a]T, on two different scales. The top graph shows [AaBb] for
each oligo, color-coded as in A and B. Note that despite the similarity of the blue and red competition curves in A, the oligo with the higher value of n (red) forms more ternary complex at
all [a]T, and the red curve approaches the black curve at high [a]T. This provides a plausible explanation for the in vivo behavior of the binding sites represented by the blue and red curve:
the one with the higher n (red) is more potent. It is more similar to the black curve than to the blue curve at high [a]T, suggesting that the ability to form ternary complexes at high [a]T
may explain the relative functionality of these binding sites in vivo. The middle and bottom graphs show [AaB] (dashed) and [ABb] (dotted), respectively, for each oligo, color coded as
above. As seen in the competition experiment in B, the less cooperative oligo forms more binary complexes (blue) than does the more cooperative oligo (red), especially AaB at high [a]T,
due to its having a lower Kd for binding each of the proteins. A similar phenomenon occurs at high concentrations of these oligos in the competition experiment: the less cooperative site
sequesters more of each protein individually, while it forms less ternary complex than does the more cooperative site. These complexes are invisible in a competition assay, because the
competitor oligo is unlabeled. For derivations of equations that can be used to generate these graphs, see Fig. 3A in Peacock and Jaynes [2]. For derivations of equations for graphing the
total occupancy by each protein as a function of [a]T, see Fig. 3B in Peacock and Jaynes [2].
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system of Fig. 4A was used, and a series of 15 points ([UA]T, [Aa]) were
calculated, with simulated experimental noise added to [Aa]. For the
saturation binding experiment, the simple system of ligand a binding
substrate A to form complex Aa was simulated to produce points ([a]T,
[Aa]). For comparison with competition binding, it was assumed that
[a]T was actually a dilution series from an unknown stock [a]T0. The
points generated in each simulated experiment were then fit with least
squares regression [40,41] to the corresponding equations used to
generate them, but now with [a]T0 and KA unknown, and experimental
noise in [Aa]. This simulation was repeated 100 times to produce a
Monte Carlo estimate of the 95th percentile of the absolute percent
error of the parameter estimates, which is shown for each of the 7
conditions. For details, see Fig. 4B in Peacock and Jaynes [2], which
shows the same system as Fig. 4B, again solved for ternary complex
[AaBb] as a function of [a]T, plotted at a variety of parameter values,
and showing the 50th percentile as well as the 95th.

In Fig. 4C, the system of Fig. 2 is used to draw graphs for different
values of the cooperativity factor n. This is done to demonstrate how
the expression derived for [AaBb] as a function of total ligand [a]T can
be used to determine n, via regression analysis, once KA and KB have
been determined (using, e.g., the method illustrated in Fig. 4A).

Fig. 4. Illustrations of curve-fitting equations and error comparison.A: Families of
competition curves with different values of [a]T and KA. Labeled binary complex, [Aa], is
graphed as a function of increasing total unlabeled binding site, [UA]T, with constant
amounts of both labeled binding site, [A]T, and total ligand, [a]T. The applicable formula
is [UA]T = [A]T ∗ ([a]T / [Aa] − KA / ([A]T − [Aa]) − 1). Sets of data points {([UA]T,
[Aa])} along with known [A]T can be used to find both KA and [a]T as parameters using
freely available curve fitting software (see text). The values used here are: [A]T = 2 for all
curves; [a]T = 6, 5.4, and 6.6, and KA = {1.5, 5, 16.5}, {1.3, 4.4, 14.7}, and {1.7, 5.6,
18.3}, for the black, red, and blue curves, respectively. The values of KA were adjusted to
give 3 sets of 3 curves each with the same 3 initial values (without competitor), 0.5, 1.0,
and 1.5. Note that each set of curves with the same starting value diverges significantly as
competitor increases. B: Performance of competition and saturation binding methods for
simultaneously finding [a]T and KA. Monte Carlo analysis (100 trials are represented by
each data point) of the accuracy of curve fitting to find both [a]T and KA as parameters
was run with 15-point data sets at 7 different [A]T using either competition (fixed [a]T,
varying [UA]T, as illustrated in A) or standard saturation binding (varying [a]T, no
competitor). Data sets were generated by introducing random errors into calculated va-
lues of [Aa]. These errors were randomly drawn from a normal distribution (centered on
zero) such that 95% of the errors were within ±10% of the actual value (standard de-
viation = 5%, mean error = 4.0%, median error = 3.4%). Percent errors are shown in
the values found for each parameter ([a]T and KA) using least-squares non-linear re-
gression. These percent errors were ranked by increasing absolute value, and the 95th
largest (out of 100) plotted, with errors bars extending between the 90th and 99th largest.
These error bars represent a 95% confidence interval for the true value of the 95th error
percentile, based on standard statistical analysis. Note that the best estimate for KA is
provided by the competition method at low [A]T, which simultaneously provides a precise
estimate for [a]T. See text for further explanation. C: Family of curves with different
values of n. [AaBb] is graphed as a function of [a]T, holding constant [b]T and [AB]T, for 3
different values of the cooperativity factor (n). KA = 3000, KB = 600, n= {5, 50, 500}
for the black curves, n = {4.5, 45, 450} for the red curves, and n = {5.5, 55, 550} for the
blue curves. The uppermost black curve corresponds to the black curve in Fig. 3C, top.
Once KA, KB, and [b]T are determined, the formula used to draw these curves can be used
to find n from sets of data points {([AaBb], [a]T)} using freely available software (see
text). The formula is

= + + − + + −

+ − + +

+ + + − + + −

+ − +

−
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Note that the upper set of curves in the upper graph (which differ among themselves only
by a change in n of 10%, like each set of 3 closely situated curves) are very close together,
making it difficult to determine this n (= 500) using these values of [AB]T and [b]T.
However, when both are reduced by a factor of 10 (as shown in the lower graph), the
upper set of curves (again representing n= 500) diverge more. Thus, n values that result
in saturation of the probe (AB) can be more precisely determined by reducing its con-
centration, along with that of the fixed [b]T (which is optimal for determining n when it is
similar to [AB]).
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3. Results and discussion

3.1. One ligand binding cooperatively to two sites

In order to develop a practical, systematic approach to the problem
of cooperative binding, we begin with the simplest case. A straight-
forward model to describe the binding of a single ligand to two sites is
illustrated in Fig. 1A. A species with two distinct ligand binding sites
(AB) can form a ternary complex (AaBa) with free ligand (a) by first
forming either of two single-ligand intermediates, AaB or ABa. Adding a
second ligand then converts either of these to the ternary complex.
Assigning standard equilibrium binding constants (dissociation con-
stants, or Kd's) to each of these reactions gives the relationships shown
in Fig. 1A below the flow chart. While there are 4 distinct Kd's, one of
them is not independent, but is completely determined if the other 3 are
fixed. Reflecting this, we use only 3 variables to describe these Kd's,
noting that the two Kd's governing the occupancy of site A are related to
each other by the same factor that relates the two Kd's that govern the
occupancy of site B. We call this factor n, the cooperativity factor. It
represents the fold decrease in Kd that results from prior occupancy of
the other site, or, equivalently, the fold increase in affinity for a second
ligand caused by binding of the first ligand. Thermodynamically, it is
related to the change in free energy of association (or dissociation) of
one ligand that results from binding by the other. A cooperativity factor
>1 indicates positive cooperativity, where bound ligand increases the
affinity for additional ligands, while a cooperativity factor <1 means
that bound ligand reduces the affinity for additional ligands. Using
these relationships, for any specified Kd's KA and KB, cooperativity
factor n, and total concentration of AB, we can calculate the occupancy
of each site, and the overall fractional occupancy, θ, at any con-
centration of ligand. The fractional occupancy as a function of free li-
gand concentration (both on a log scale) can then be displayed as a Hill
plot [1,42,43], to see how such plots vary for different sets of constants.

Fig. 1B shows several interesting cases that illustrate some of the
difficulties with using such plots for measuring cooperativity experi-
mentally. The blue curves show two cases that conform to the situation
of equivalent sites (KA = KB, or KA / KB = 1), for which the Hill
formalism was originally derived, while the solid blue curve shows the
classical case of positive cooperativity. The maximum slope (the purple
line is tangent to the curve at the point of maximum slope) is greater
than that without cooperativity, where the plot is a straight line of slope
1 (not shown). As is well known, this maximum slope approaches the
number of cooperating sites (in this case 2) as the cooperativity be-
comes very large. When the cooperativity is negative (n < 1; n= 0.04
for the dashed blue curve), the plot shows the opposite shape, having a
slope < 1 at its minimum point. (This maximum or minimum slope
always occurs at 50% occupancy for two sites, discussed further below.)
These effects depend strongly on the assumption of equivalent sites, a
condition that is not often achieved with biological molecules, parti-
cularly for protein binding sites on DNA. When the two sites have dif-
ferent Kd's and no cooperativity (n = 1), the Hill plot shows the same
behavior as with equivalent sites and negative cooperativity, illustrated
for the case where the Kd's differ by a factor of 100 (Fig. 1B, dashed red
curve).

Strikingly, positive cooperativity can be completely masked for non-
equivalent sites [7], resulting in a straight line (solid red), which is
indistinguishable from equivalent sites with no cooperativity (not
shown). This, of course, occurs only for particular values of relative Kd
and cooperativity, but in all cases of non-equivalent sites, apparent
cooperativity is reduced. If the ratio of Kd's is far enough from 1, it will
look like negative cooperativity rather than positive cooperativity (not
shown). The precise conditions for these effects are given in the legend
of Fig. 1B, and derived in Fig. 1A of Peacock and Jaynes [2]. Clearly,
then, in cases where binding sites may not be equivalent, Hill plots are
highly unreliable indicators of cooperativity [44,45].

3.2. One ligand binding cooperatively to two or more equivalent sites

The Hill equation assumes an implausibly high-order reaction me-
chanism, equivalent to the simultaneous binding of multiple ligands.
However, in the special case of equivalent sites and very high co-
operativity, the Hill formalism can serve as a good approximation,
especially if the cooperativity occurs in a single step. Fig. 1C, D in
Peacock and Jaynes [2] provides an illustration of Hill plots for this
case, and for the related case of progressive cooperativity, where each
additional bound ligand changes the affinity for subsequent ligands in
equal increments.

To summarize the lessons that can be gleaned from these examples
(see Fig. 1 in Peacock and Jaynes [2] for a full description), for a Hill
plot to reveal either the number of cooperating sites or the degree of
cooperativity, accurate binding data must be obtained for a wide con-
centration range in order to determine the point of maximum slope.
This is because the maximum slope may not occur at 50% occupancy,
and slopes at either extreme of concentration approach 1. Perhaps most
unrealistically, these approaches are only effective for equivalent ligand
binding sites, which is rarely expected for natural DNA binding sites
and ligands.

3.3. Two proteins binding cooperatively to two sites: an alternative to
measuring co-complex formation as a function of one protein concentration

If the Hill formalism is not appropriate for most realistic situations
involving cooperative binding, what is the solution? The one clear ad-
vantage of the Hill equation is its simplicity, and this is of course also
the source of its limitations. To better model the complexities of real
life, it is useful to first study a relatively simple case in some detail, and
then use the results to build up to more complex situations. We there-
fore consider the case of two ligands that cooperate on two distinct
binding sites (here and in Sections 3.4 and 3.5). We will use the ex-
ample of DNA binding proteins cooperating on nearby DNA sites as our
model system, but the methods we describe are general. These methods
apply to any case where two different ligands bind two distinct sites on
a receptor or substrate, with cooperative interactions affecting the re-
levant binding constants.

This situation has been studied in some detail in a variety of con-
texts, and it is useful to consider commonly used methods and their
limitations. One approach models the system as a single ligand binding
to its site, by measuring an apparent Kd of one protein binding in the
presence of the other (e.g. [46]). Conceptually, the single “site” is re-
presented by the combination of binding sites and the ligand with
constant concentration. Experimentally, we choose a fixed concentra-
tion of double-stranded DNA oligonucleotide (oligo) containing the
cooperating pair of binding sites, along with a fixed concentration of
one of the proteins, and measure the amounts of ternary complex that
form as the concentration of the second protein is varied. Typically, the
fixed concentrations are chosen based on preliminary experiments that
reveal cooperative binding. When a chosen concentration of each pro-
tein alone gives little or no detectable binding to the oligo, while mixing
all three components results in a clearly detectable ternary complex,
positive cooperativity is indicated. It is often of interest in such cases to
compare the affinities of related pairs of proteins for the same DNA
sites, or of similar (e.g., mutated) sites for the same pair of proteins. We
consider here and in Section 3.4 the methods typically used for such
comparisons, along with their limitations. We use an example from the
literature in some detail, to illustrate how a more complete analysis of
the binding parameters can reveal important aspects of the underlying
mechanism of binding.

First, we consider the option of measuring an apparent Kd as de-
scribed above, and using it to compare two related sets of proteins or
sites. A binding scheme to describe the situation is shown in Fig. 2A. It
is very similar to that considered in Fig. 1A for a single ligand binding
cooperatively to two different sites, but here there are two ligands, each
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binding to only one of the sites. As before, we assume that the binding
can occur to each site independently (binding is not ordered), which
implies that the ternary complex can dissociate in either of two ways.
Also as before, the binding can be described fully using three para-
meters: n, along with the two binary complex Kd's, KA and KB. In
principle, KA and KB can be measured independently and directly, as-
suming that non-specific binding (including binding of each protein to
the other site) occurs only with orders of magnitude lower affinity,
which is often found to be the case. As we demonstrate later, once the
individual Kd's are known, n can be readily determined, at least in
principle. In practice, there are interesting cases where one of the in-
dividual Kd's is so high (i.e., the affinity is so low) as to be difficult to
measure directly. In Section 5 of Peacock and Jaynes [2], it is shown
how to leverage an individual measurement of only one of the Kd's,
along with the results of cooperative binding, to determine all three
parameters.

Strikingly, in the situation described above where total concentra-
tion of protein a ([a]T) is varied, and total concentrations of both oligo
([AB]T) and protein b ([b]T) are fixed, a wide variety of binding beha-
viors can result. When comparing the concentration of ternary complex
([AaBb]) formed when using either of two sets of parameters, we find
that [AaBb] for one set of parameters may be lower than for the other
set at low [a]T, but higher at high [a]T. In other words, the curves of
[AaBb] vs. [a]T may cross (Fig. 2B). This can occur in either of two types
of comparisons: comparing two different pairs of sites bound by the
same two cooperating proteins, or comparing two sets of proteins
binding to the same pair of binding sites. Importantly, in either case, if
data from such an experiment are used to determine an apparent Kd for
each binding curve, the expectation would be that where the apparent
Kd is lower, [AaBb] would be higher at all values of [a]T. While this is,
of course, true for a single ligand binding to a single site, this ex-
pectation fails with multiple ligands.

This is illustrated in Fig. 2B for the special case where KB is the same
for all the curves. This would apply, for example, to comparisons of
cooperative binding to an oligo by different members of a DNA-binding
protein family, in combination with a common DNA-binding protein
partner. The green curve gives the lowest apparent Kd, but it has the
lowest [AaBb] at high values of [a]T. The red curve gives the highest
apparent Kd, but it has the highest [AaBb] at high values of [a]T. And
the blue curve gives a lower apparent Kd than does the red curve, yet it
has a lower [AaBb] at all values of [a]T. The general reason for these
“unexpected” outcomes is that the actual 3-parameter system gives
more complex curves than can be modeled using a single parameter.
The specific reason is that the concentration at which AB is saturated
with ligand, which occurs at very high [a]T, can be very different for the
different curves. For curves where KB is the same, as in Fig. 2B, the
curve with the highest cooperativity factor has the highest saturation
concentration of AB, regardless of KA. For example, the black and blue
curves have different Kd's but the same cooperativity factor, and
therefore saturate at the same level ([AaBb] = 0.75; see Fig. 2B in
Peacock and Jaynes [2] for the general formula). This is because at very
high [a], KA becomes irrelevant. Given that both [AB]T and [b]T are
constant, the amount of b incorporated into AaBb, in equilibrium with b
and AaB, at very high [a] depends only on the Kd for dissociation of b
from AaBb, namely KB/n.

From these examples, we can see that neither ranking the amounts
of ternary complex formed at any one [a]T nor measuring an apparent
Kd in this type of experiment is predictive of relative complex formation
overall. (The criteria used to define apparent Kd's are given in Fig. 2B of
Peacock and Jaynes [2].) Curves like these will cross each other under
conditions that we can glean from the governing equations (given in
Fig. 2A in Peacock and Jaynes [2] and described in Fig. 2C of Peacock
and Jaynes [2]). Fig. 2C in Peacock and Jaynes [2] also gives an ex-
pression for the apparent relative affinity measured in SELEX-seq ex-
periments of the type described in Riley et al. [47], in terms of the Kd's
and cooperativity factors of two cooperating ligands on two composite

binding sites.
Another important issue when using this assay is illustrated in

Fig. 2C. Two pairs of curves are shown, representing two different
concentrations of the “fixed” ligand. As seen by comparing the two
pairs of curves, one binding site forms more ternary complex at one
fixed concentration, while the other does so at the other fixed con-
centration, throughout most of the concentration range of the varying
ligand. That is, the relative binding behavior reverses in the two cases.
The red curve represents a more cooperative site, and at higher con-
centrations beyond the range shown, it forms more ternary complex
than does the less cooperative site, regardless of which concentration of
fixed ligand is used.

Here, it is important to note that the formulae and concepts devel-
oped throughout this work depend only on relative, not absolute,
concentration units. Therefore, we have not specified units for either
concentrations or Kd's, except for the specific example developed in
Section 3.4 below. Furthermore, cooperativity factors are inherently
unitless. Although the absolute nuclear concentrations of most tran-
scription factors have not been established, they are generally thought
to be in the range of nanomolar to micromolar [48]. This is also thought
to be the concentration range for their functional set of binding sites,
and for their individual Kd's in binding to those sites. Therefore, it
would be appropriate in applications involving these molecules to
consider our values for concentrations and Kd's to have units in the
picomolar to nanomolar (nM) range.

Cooperativity for transcription factors has been quantified in very
few cases. For λ phage cro and cI repressors, the measured interaction
free energies correspond to cooperativity factors of <200 [49,50].
(Each change in Kd of 10-fold corresponds to a change in interaction
free energy of about 1.37 kcal/mol.) Enhanceosomes in mammalian
systems involve a number of cooperatively binding proteins [51–53].
Although in several of these cases, synergistic increases in site occu-
pancy were attributed to cooperative binding, no quantitation of co-
operativity was reported. However, interactions between transcription
factors whose nuclear concentrations are below about 100 nM can re-
sult in cooperativity factors up to about 106 without leading to much
dimerization in solution. Thus, the cooperativity factors that we have
used here are all physiologically plausible.

Clearly, in order to model the system accurately, we need to mea-
sure more than one parameter. In Section 3.5, we consider the com-
monly used method to measure individual Kd's and compare it with a
novel method, then go on to show how these can then be used to ac-
curately determine the cooperativity factor n. Once these three para-
meters are known, we can predict the binding behavior, and specifically
the relative amounts of each complex, at all concentrations of the
components.

Before doing this, we consider another method commonly used to
compare the affinities of different combinations of proteins and binding
sites, competition experiments, where an unlabeled oligo competes
with a labeled oligo for binding by fixed amounts of the proteins [54].
We will consider an example of this experiment in some detail, both to
illustrate its limitations and to resolve an apparent paradox, leading to
new biological insights.

3.4. A case study: insights from an analysis of competition assays

In a paper published in 2012 [38], Fujioka et al. characterized
several cooperative binding sites for the Engrailed (En) protein within
the sloppy-paired (slp) locus of Drosophila. En shows strongly co-
operative binding to each of these sites with a cofactor complex, which
contains one molecule each of the proteins Exd and Hth. This cofactor
complex forms in solution and can be co-purified as a single complex
when the proteins are co-expressed in bacteria. This stable complex has
therefore been treated in binding studies as a single entity, Exd/Hth
[35,37,46,54–57]. We compared the apparent affinities of four binding
sites from slp, and found that two of them showed strong binding by En-
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Exd/Hth, while the other two were much weaker. These assessments
were based on a combination of both direct binding assays and com-
petition binding experiments like those described above. In all cases,
ternary complex formation was monitored using gel shift analysis. Note
that we refer to the complex containing En, Exd/Hth, and an oligo
consisting of the cooperatively bound (composite) site as a ternary
complex, because we model Exd/Hth as a single entity for the purposes
of studying its cooperativity with En. Binding by the individual proteins
was found to be relatively low, and in some cases was undetectable,
consistent with a high degree of cooperativity in the binding. However,
an apparent paradox was uncovered in that the two lower affinity sites
showed distinctly different functional characteristics in vivo, despite
very similar behaviors in the binding assays. The functional assay in-
volved repression of a reporter transgene in En-expressing cells in the
developing Drosophila embryo, which is dependent on a functional
binding site for En and Exd/Hth [38]. We speculated that the subtle
differences we observed in their apparent cooperativity might be re-
sponsible for their distinct functional potencies: the more cooperative
site gave more complete repression in vivo. Despite this difference,
which emerged from a limited set of direct binding assays, the com-
petition assays, considered a good way to quantify relative affinities,
showed no difference between them.

In modeling studies represented in Fig. 3, we revisit this issue by
using the results from that work [38] to estimate individual Kd's and
cooperativity factors for these sites. We model the binding using these
parameters, and make several noteworthy discoveries that may explain
both the difference in function of the low-affinity sites and why the
competition assays did not reveal a distinction between them. These
results have important implications for the limitations of these assays,
and provide guidelines for their effective use. We note that these results
are based on published studies, and it is not our purpose here to es-
tablish new biological principles. Rather, we illustrate how quantifying
both Kd's and cooperativity factors allow exploration of binding beha-
vior that is outside the concentration range used in the in vitro experi-
ments themselves. This in turn can lead to new biological insights, in-
cluding novel hypotheses that can be tested in subsequent studies. In
particular, our analysis is not meant to either test or validate the as-
sumption that Exd and Hth function strictly as a single unit when co-
operating with En.

The competition binding assays yielded “competition curves” for
each of the sites [38]. In this assay, as mentioned above, a labeled oligo
containing the highest affinity site is bound by unlabeled proteins, with
fixed concentrations. Increasing amounts of an unlabeled competitor
oligo are added, which carries either the same sites as the labeled oligo
or different sites, and the decrease in binding to the labeled oligo is
quantified. Theoretical curves that closely match the published curves
are presented in Fig. 3A for three of the sites. For simplicity, we use
only one of the two high-affinity sites, which behaved similarly both in
the binding studies and in vivo. To produce these curves, we used the
limited set of direct binding studies available to estimate a range for the
individual Kd's and n for each site. We then refined these estimates to
produce competition curves that match the data well. Although we do
not consider these refined estimates to be precise, they nonetheless
suggest a novel hypothesis as to why one of the sites functions better in
vivo. More generally, the modeling results illustrate why the assays can
be misleading, and provide guidance for their effective interpretation
and use.

The main conclusions from these studies are 1) the two lower affi-
nity sites have distinct binding behaviors that may explain their func-
tional differences in vivo, 2) the competition binding studies did not
reveal these differences because of the particular range of concentra-
tions used, and 3) at those concentrations, the two lower affinity sites
competed very similarly, but for different reasons. We now describe the
results in some detail, to justify and fill out these conclusions. We then
describe the lessons learned, one of which applies specifically to the
interpretation of competition assays, while another reinforces the

lesson from prior sections that in the face of the complexities of co-
operative binding, even to two sites, it is necessary to measure multiple
parameters in order to model the system effectively. This then provides
the impetus to explore novel ways of measuring those parameters,
presented in Section 3.5.

Fig. 3A shows that unlabeled oligos carrying the two low-affinity
sites compete very similarly (red and blue) for binding to a labeled oligo
carrying the high-affinity site. Of course, the high-affinity site itself
competes much more effectively (black). Fig. 3B shows that the two
low-affinity sites compete similarly for very different reasons, in terms
of the complexes that they form as their concentrations increase. Al-
though they each initially form more ternary complex (solid blue and
red) than single-protein complexes, the oligo with the lower n (blue)
binds relatively more of the single-protein complexes (dotted and da-
shed curves). This difference is magnified at higher concentrations,
where the less cooperative oligo forms more of each of the single-pro-
tein complexes (blue dotted and dashed curves) than it does the ternary
complex (solid blue), while the more cooperative oligo continues to
form much more ternary complex (solid red). So, while the net result in
the competition assay appears the same, this is specific to the choice of
concentrations of labeled oligo and proteins. At other concentrations,
differences would be more apparent. Rather than illustrating this, we
show in Fig. 3C the differences in direct binding by these two oligos,
which may explain their differences in function.

Fig. 3C, top, shows direct binding curves of the type in Fig. 2,
[AaBb] vs. [a]T with both [b]T and [AB]T constant. Here we see that
more ternary complex is formed on the “red” site at all [a]T, compared
to the blue curve. The more cooperative low-affinity site, which forms
more ternary complex (solid red), is the one that functions better in
vivo. In fact, its function in vivo is more like that of the high-affinity site
than it is the other low-affinity site [38]. This may be explained by the
fact that the amounts of ternary complex formed by the two higher-
functioning sites (solid black and red) become more similar at high
[a]T, and more distinctly different from the lower-functioning site (solid
blue). That is, the red curve approaches the black curve, and separates
from the blue curve, at high [a]T. This behavior is due to the higher
cooperativity of the better-functioning site, as explained above for
Fig. 2: the saturation value depends more on the cooperativity, while
the relative behavior at low [a]T is more dependent on KA.

Fig. 3C (middle and bottom graphs) illustrates the underlying
reason for the “surprisingly strong showing” by the lower-functioning
site in the competition assay. At a given set of concentrations, it forms
more single-protein complexes (blue dashed and dotted) than does ei-
ther of the other two sites (red and black). The results of a competition
experiment depend on the total amount of each ligand bound by a site,
rather than only the amount of ternary complex. Thus, less ternary
complex is made up for by the formation of more single-protein com-
plexes. This is again consistent with the lower cooperativity of the
lower-functioning site (it forms relatively less ternary complex and
more of the single-protein complexes).

In the competition assays, the total amount of unlabeled, competing
binding site goes well beyond the range used in direct binding assays
for the same site, typically up to hundreds of fold more. At such high
concentrations, single protein complexes can dominate, even though
very little of them form in direct binding assays. At the concentrations
used in these experiments, this was the case. Therefore, only if sites are
independently known to have either similar Kd's for formation of each
single-ligand complex, or to have similar cooperativity factors, can we
expect competition assays to reveal a simple set of “relative affinities”.

As these examples emphasize, modeling the binding of cooperating
ligands using a single parameter can only have predictive power for
occupancies of sites over a limited concentration range. This limitation
should be taken into account when interpreting experiments based on
high-throughput methodologies. An example is given in Fig. 2C of
Peacock and Jaynes [2].
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3.5. A comprehensive method for modeling relative complex formation over
a wide range of concentrations

The foregoing argues for measuring individual Kd's and a co-
operativity factor in order to model binding by a cooperating pair of
ligands. To this end, we first describe a less well-known method that has
significant advantages over standard methods for determining an in-
dividual Kd. We then show how the cooperativity factor can be de-
termined once both individual Kd's are known. In Section 5 of Peacock
and Jaynes [2], this methodology is extended to find both the co-
operativity factor and the second Kd when only one of the individual
Kd's can be accurately determined using single-ligand binding.

Standard methods have been described for determining individual
Kd's that involve simply measuring complex formation as a function of
ligand concentration (the “saturation binding” method; see e.g. [41]).
However, in cases where cooperativity is high, individual Kd's can be
challenging to determine accurately, particularly in cases where either
the available amount of ligand or its tendency to aggregate precludes
obtaining data at high ligand concentrations. Our alternative method
uses competition assays, similar to those illustrated in Fig. 3A, except
that only a single ligand is used to determine its individual Kd.

Using competition assays to determine an individual Kd has sig-
nificant advantages, particularly in the case of DNA binding proteins.
Preparation of proteins for binding assays often involves concentrating
them in a way that can cause denaturation, and for this and other
reasons, the fraction of protein that is active in binding may be difficult
to determine. In such cases, directly measuring the amount of protein
provides only an upper limit on its effective concentration. Using a
competition binding assay, we can straightforwardly determine both
the Kd and the active concentration of ligand from the same data set.
We note in this context that recently developed high-throughput
methods for comparing DNA affinities [58] do not always distinguish
between absolute and active concentrations of ligand. Further, it is
important that these high-throughput methods include exemplars for
entrainment and validation that have been characterized by methods
grounded in solution biochemistry, such as the following.

Fig. 4A shows examples of binding curves from modeling this type
of competition experiment, in which constant total amounts of labeled
oligo ([A]T) and ligand ([a]T) are used in combination with increasing
amounts of unlabeled oligo ([UA]T), and the resulting ligand-substrate
complex ([Aa]) is quantified. [Aa] decreases as [UA]T is increased,
while all other quantities are constant. [A]T is known, and [a]T and KA

are determined as parameters in a non-linear regression analysis. Va-
lues for constants were chosen to illustrate why the approach can yield
these two parameters independently. When any family of curves re-
presenting different Kd's and ligand concentrations start at the same
point (i.e., they give the same amount of complex without competitor
oligo), they have significantly different shapes, and so diverge from
their common starting point, no matter where that starting point is. The
differences between the 3 colors is a 10% change in [a]T. The values of
KA are adjusted for each curve to give the same initial value of [Aa].
This difference in shape can be captured during regression analysis to
give the two parameters independently. Fig. 4A of Peacock and Jaynes
[2] gives a derivation of the expressions used. These expressions can
also be used in a high-throughput analysis to determine the relative
affinities of related binding sites, where the highest affinity site is la-
beled, and measurements are made using a panel of unlabeled sites of
how well they compete for binding to a fixed amount of protein, as
described in Hallikas et al. [59]. Fig. 4A of Peacock and Jaynes [2] gives
an exact expression for determining the relative affinity in such an
experiment, and also a simple approximation for the case where only a
small fraction of labeled oligo is bound without competitor (which is
different from that given in Hallikas et al. and has the correct limit
behavior).

We tested the ability of this method to give precise values for the
parameters KA and [a]T under different conditions, and compared it to

the traditional saturation binding method. First, a few words about the
latter method. It is possible, in principle, to use saturation binding to
determine both KA and [a]T simultaneously. This can be done by
varying [a]T in a systematic way (for example by diluting a stock so-
lution) and measuring the resulting [Aa], without initially knowing the
actual values of [a]T. If we let the reference value of [a]T be [a]T0, and
each experimental value be [a]T0 / Δ (Δ is the “dilution factor”, which
varies for each data point, while [a]T0 is a constant to be determined
from regression analysis), then the relevant formula is Δ = [a]T0 /
{[Aa] ({KA / ([A]T − [Aa])} + 1)}. From the data set {(Δ, [Aa])}, and
knowing [A]T, we can use regression analysis to simultaneously find the
two parameters KA and [a]T0. Although this can in principle work ef-
fectively, it requires using a set of experimental conditions that are
unknowable before the Kd is determined. The optimal conditions are
when [A]T ~ 10*KA (of course, KA is initially unknown). Even under
these optimal conditions, data that are precise to within about 10% are
required to determine KA within about 50% and [a]T within about 10%
(Fig. 4B).

In contrast, using the competition method described above, it is
possible to use data accurate to within ~10% to determine KA within
about 20% and [a]T within about 7% (Fig. 4B). Importantly, the com-
petition method provides this level of precision as long as the [A]T used
is less than or ~KA. This contrasts with the saturation binding method,
which becomes much less effective at determining KA when [A]T is
either above or below 10*KA by several-fold or more. The flexibility and
resolving power of the competition method allows us to define an op-
timal approach to precisely determining both KA and [a]T: use the
lowest [A]T that allows precise quantitation of [Aa], and the highest
[a]T available, up to a [a]T that gives [Aa] ~ [A]T/2 without competitor
UA. Data taken under these conditions, and with increasing UA so that
[Aa] is reduced to 1/3 or less of its initial value without UA, will give
the most precise value practicable for KA, along with a somewhat more
precise value for [a]T.

These conclusions are put into context in Fig. 4B, which shows the
results of a Monte Carlo analysis of the two methods. A random error
was introduced into data sets, and regression analysis was used to find
KA and [a]T as parameters from the data. The resulting errors in the
parameters are shown, as a function of the chosen value for [A]T. The
value of KA was fixed at 1. This is justified by the fact that it is only the
relative values of [A]T, [a]T, and KA, and not their absolute values,
which determine the shapes of the curves, and therefore how precisely
the parameters can be determined. As Fig. 4B illustrates, when [A]T
exceeds KA by >10-fold ([A]T > 10 in this case), determination of KA

becomes increasingly unreliable (approaching or exceeding 100% error
at least 5% of the time) with both methods. With [A]T between KA and
10*KA, both methods provide similarly reliable estimates of both
parameters. Importantly, with [A]T < KA, the competition method be-
comes more reliable, while the saturation method fails completely.
These results support the strategy given in the previous paragraph for
finding the two parameters simultaneously to the best possible preci-
sion under a wide variety of circumstances. Similar results are obtained
with different errors in the input data sets (1% and 5%, Fig. 4B of
Peacock and Jaynes [2]). Errors at the 50th percentile in the error
distribution (Fig. 4B of Peacock and Jaynes [2]) follow the same qua-
litative pattern as those at the 95th percentile (Fig. 4B), illustrating that
the overall error distribution is similar in all cases as a function of the
chosen [A]T.

For both the competition and the saturation binding methods, a
more precise value for [a]T and a less precise value for KA are obtained
when higher values of [A]T are used above ~10*KA. The precision for
KA achievable within an experiment never exceeds that for [a]T. This is
because in both formulae, KA is divided by ([A]T − [Aa]), whereas [a]T
(or [a]T0) is divided by [Aa], which is typically lower when averaged
over the data points than is ([A]T − [Aa]). Therefore, a smaller change
in [a]T compensates for a larger change in KA. This causes the bounds
placed on [a]T by the data to be more stringent than those placed on KA.
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For curve fitting to determine an individual protein's Kd and its
concentration by the above methods, we can use freely available soft-
ware (e.g., at “statpages.org/nonlin.html”), along with the expressions
given above and in Fig. 4A of Peacock and Jaynes [2] (which also in-
cludes their derivations). Fig. 4A of Peacock and Jaynes [2] also in-
cludes equations to provide initial guesses for the parameters from one
or two data points, which are sometimes needed for the regression al-
gorithm to converge.

It is often useful, from an experimental point of view, to include
non-specific DNA in such binding experiments, to minimize the effects
of contaminating DNA binding proteins that may come through the
purification process. Therefore, we developed an alternative metho-
dology which allows accurate determination of [a]T and KA, as well as
the Kd for non-specific binding, as parameters from curve fitting. The
expressions used for this purpose, along with derivations and a de-
scription of how to analyze the data, are given in Fig. 4C of Peacock and
Jaynes [2]. As an illustration of why this can work, if non-specific DNA
is included in the experiment shown in Fig. 4A, the apparent Kd's
change without a significant change in the shapes of the curves, as long
as the ratio of the non-specific Kd to each of the specific Kd's is much
>1. So, the set of curves shown there is indistinguishable from that
resulting from the inclusion of non-specific DNA with a Kd of 1000 at a
concentration of 4000, with the same values for [A]T (= 2), and [a]T
(= 6, 5.4, and 6.6), but with all of the KA's reduced by a factor of 5.

Once individual Kd's have been determined for both cooperating
proteins, n for the composite site can be found readily. A simple method
is illustrated in Fig. 4C. Here, the same equation used to generate curves
in Figs. 3B, C and 4C is used to show how a 10% change in n affects the
amount of ternary complex that forms as one ligand increases in con-
centration, while the total amount of the other is held constant. The
same expression can be used in regression analysis to determine n from
data of this kind. The upper panel of Fig. 4C shows 3 families of 3
curves each. Each family has a different value for n, and within each
subfamily (those lying close together), this difference is 10%, either
above (blue) or below (red) the middle value (black). The uppermost
black curve in this graph uses n = 500, and it is the same as the black
curve in Fig. 3C, upper panel. The other two subfamilies have n reduced
by 10 and 100-fold, but use the same Kd's. The relative amount of se-
paration within each subfamily suggests how precisely n can be de-
termined from data in such an experiment. The upper panel shows that
the higher n value will be relatively difficult to determine accurately
with the chosen concentrations of oligo and fixed protein. However, if
we reduce these values, the curves for n = 500 ± 10% are more widely
separated, as illustrated in the lower graph of Fig. 4C (both [AB]T and
[b]T are reduced by 10-fold relative to the upper graph). In this case, it
becomes easier to accurately determine n = 500, while it may become
more difficult to determine the lower n values used here.

In order to get the most accurate determination of n, [AB]T and [b]T
should be chosen to allow ternary complex formation to approach 50%
saturation, but not exceed it. However, if this is not achievable with a
[AB]T that is high enough to allow accurate quantitation of ternary
complex, it may be best to use the lowest [AB]T (and [b]T, which should
be comparable) that does allow accurate quantitation, and also results
in <50% saturation at the highest achievable [a]T. The latter, of
course, may be limited by the amount of available ligand. For regres-
sion analysis to determine n, we use the expression given in Fig. 4C (and
derived in Fig. 2A of Peacock and Jaynes [2]).

The method described above requires that each individual Kd be
measurable. However, for some ternary complexes, one of the ligands is
not observed to bind alone, even at concentrations much higher than
those required for strong, cooperative binding. A well-known example
of this is described by Jin et al. [60], involving cooperative binding by
the yeast transcription factors a1 and α2. Binding by α2 alone was seen,
and addition of a1 resulted in much greater complex formation, sug-
gestive of highly cooperative binding. However, even at the highest
concentrations tested, no binding by a1 alone was observed. In order to

extend our method to this type of situation, we devised equations for
curve fitting to find both the Kd of the weakly binding ligand and the
cooperativity factor from gel shift analyses similar to those presented by
Jin et al. [60]. This method is described in Section 5 of Peacock and
Jaynes [2].

3.6. Generalizing the methods to more than two binding sites and
cooperating ligands

How can this methodology help us in understanding the functions of
more complex composite binding sites, such as those often found in
higher eukaryotic genes? Once the Kd's and pairwise cooperativity
factors have been determined for pairs of individual sites that make up
the composite site, it is straightforward to model them as an interacting
network of pairwise interactions. In a typical “Boltzmann” statistical
thermodynamic version of such a model ([24] and references therein),
the free energy differences induced by each pairwise interaction are
combined to give a relative free energy, and therefore a relative occu-
pancy under any specified conditions, for each possible complex. The
Kd's and cooperativity factor as defined above naturally feed into this
type of model, because they can be readily associated with free energy
differences among the various complexes. Although the behavior of
such sites has been modeled without information about the pairwise
interaction parameters (e.g., [24]), including those parameters would
likely yield more meaningful, mechanistic models with wider predictive
power that extends well beyond the range of the experimental data
[61].

For DNA binding proteins in particular, it may be common for
pairwise interactions to dominate the system, mediated by separable
protein-DNA and protein-protein interaction domains. For example, in
the cooperative interactions between λ phage cro and cI repressors,
pair-wise interactions between nearest neighbors appear to dominate
[49,50]. In such cases, we can measure the individual protein-DNA Kd's
and pairwise cooperativity factors, to fully describe the behavior of
complexes involving several DNA binding proteins. In these cases, the
free energy of dissociation of each of the ligands from the 3-ligand
complex can be accounted for by the dissociation energy of the two 2-
ligand complexes which contain that ligand, so the system as a whole is
solved by knowing each of the pairwise Kd's and cooperativity factors.
We now summarize the relationships among these quantities (which are
measurable using the procedures described above) and the dissociation
constants and cooperativity factor of a 3-ligand complex. Details are
provided in Fig. 6 of Peacock and Jaynes [2].

We now need subscripts for each pairwise cooperativity factor to
distinguish which pair of ligands it is associated with, as well as another
cooperativity factor associated with the 3-ligand complex. This factor is
an independent quantity in the general case where additional free en-
ergy (positive or negative) may be associated with the formation of the
3-ligand complex beyond that associated with the formation of each 2-
ligand complex.

As derived for a 2-ligand complex containing a and b in Fig. 2A:

=n ABC AaBbC
AaBC ABbC

[ ][ ]
[ ][ ]AB

and, by analogy,

=

=

n ABC AaBCc
AaBC ABCc

n ABC ABbCc
ABbC ABCc

[ ][ ]
[ ][ ]
[ ][ ]
[ ][ ]

.

AC

BC

We can find nABC to be:
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where

=

=

=

K ABC a
AaBC

K ABC b
ABbC

K ABC c
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[ ][ ]
[ ]

.
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Now, how is the “new” cooperativity factor for the 3-ligand complex
related to those of the 2-ligand complexes? Complete dissociation of the
3-ligand complex involves the sum of 3 free energies. For one possible
dissociation route, these are: the free energy change when ligand a
dissociates, that when ligand b dissociates from the 2-ligand complex,
and that when ligand c dissociates from the single-ligand complex.

Because of the basic relationship between the standard Gibbs free
energy and the Kd:

ΔG0 = –R T ln(Kd), where R is the gas constant and T is the absolute
temperature, adding these 3 free energies is equivalent to multiplying
together 3 dissociation constants: that governing the dissociation of
ligand a from the 3-ligand complex, that governing the dissociation of
ligand b from the 2-ligand complex containing ligands b and c, and that
governing the dissociation of ligand c to release the free DNA.

This product is:

⎜ ⎟⎜ ⎟⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
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=

=

ABbCc a
AaBbCc

ABCc b
ABbCc

ABC c
ABCc

ABC a b c
AaBbCc

K K K n

[ ][ ]
[ ]

[ ][ ]
[ ]

[ ][ ]
[ ]

[ ][ ][ ][ ]
[ ]

,A B C ABC

where the last equality comes from the last expression above for nABC.
So, 1/nABC represents the “extra” free energy in the complex that is due
to cooperative binding; i.e., this “extra” ΔG0 = R T ln(nABC). If there is
no cooperativity, nABC = 1, and the total free energy of dissociation is
just the sum of those for each ligand individually. From the definitions
above, we have, for the Kd that governs the dissociation of ligand a
from the 3-ligand complex:

=

=

ABbCc a
AaBbCc

ABC a
AaBC

ABC ABbCc
ABbC ABCc

ABC AaBbCc
AaBC ABbC ABCc

K n n
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2
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and similarly for the other dissociation constants from the 3-ligand
complex.

Now, what do we expect for nABC in the case where the free energies
of interaction within the complex consist solely of those found within
the respective 2-ligand complexes? In this case, as derived in Fig. 6 of
Peacock and Jaynes [2],

=n n n n ,AB AC BC ABC

and we already have enough information from analysis of the 2-ligand
complexes to predict the behavior of the entire 3-ligand system (see
Fig. 6 of Peacock and Jaynes [2], which also provides a straightforward
method for testing whether this relationship holds in any particular
case).

We can follow an analogous procedure to characterize a 4-ligand
system. If all of the interactions leading to cooperativity are contained
within pairwise interaction domains that are not significantly affected
by higher-order complex formation, then the sum of the free energies
from the pairwise interactions equals the total cooperative free energy
of the entire complex, and:

=n n n n n n nABCD AB AC BC AD BD CD

Generally, for j ligands binding to distinct sites on a substrate and
cooperating solely through pairwise interactions, the cooperativity
factor is the product of the

j j( –1) 2

possible pairwise cooperativity factors, which can each be measured by
studying the ternary complex containing those two ligands, using the
methods given here, and in Peacock and Jaynes [2].

4. Summary and conclusions

Most currently used methods for quantifying cooperative binding by
transcription factors to DNA do not provide the means to accurately
predict binding behavior over a wide range of concentrations. The Hill
equation and Hill plots are only useful for quantifying cooperativity
when binding sites are equivalent, which is rarely the case for DNA
binding proteins, as they typically bind to a variety of sites with dif-
ferent affinities. Even in the rare cases where cooperating sites are
equivalent, different modes of cooperativity are possible, and these
have sufficiently different behaviors in Hill plots as to make quantifying
the cooperativity difficult.

In recent years, two main approaches have been used to compare
cooperative binding of either 1) two different proteins to the same sites
or 2) the same two proteins to different sites. Both of these, while they
provide some useful information, have serious limitations for predicting
binding behavior over a wide concentration range. One involves
holding the concentrations of both a binding site oligo and one protein
constant while varying that of the second protein. We have shown that
this can result in binding curves that cross, precluding the general
usefulness of this approach in isolation to accurately model binding
behaviors of cooperating proteins. However, this approach is useful for
quantifying cooperativity once individual protein-binding site Kd's have
been determined.

A second approach is to compare the ability of unlabeled oligos
containing different sites to compete for binding (by two cooperating
proteins) to a labeled binding site-containing oligo. We have shown that
this approach, too, provides only partial information about the system
and can therefore give misleading results. For example, two oligos can
compete very similarly under one set of conditions, while the occu-
pancies of these sites can be very different under different conditions.

This analysis of existing methods argues for a more comprehensive
approach that can use experimental data obtained over a limited range
of concentrations to predict binding behavior over the full concentra-
tion range. We therefore developed two new tools to achieve this end.
The first tool is a new approach to determining individual protein-
binding site Kd's. Active protein concentrations must be determined in
order to obtain accurate Kd's, and our approach allows the simulta-
neous determination of both of these, as parameters in non-linear re-
gression analysis, using data from oligo competition assays. We de-
scribed an optimized approach to give maximum accuracy, which
mandates using the lowest concentration of labeled oligo which allows
robust quantitation, along with an amount of protein that gives around
50% occupancy. Holding both of these constant, increasing amounts of
unlabeled oligo identical in sequence to the labeled oligo are added.
Quantifying the resulting reduced binding to the labeled oligo gives a
data set that is fed into freely available software (e.g., at “statpages.org/
nonlin.html”), along with the equation we have derived. This can have
very significant advantages over previously described methods that
involve saturation binding (increasing concentrations of protein). One
advantage is that our method typically requires lower protein con-
centrations, avoiding problems of precipitation or aggregation at high
concentrations. The second advantage is that both active protein con-
centration and Kd can be accurately determined without prior knowl-
edge of either parameter.

The second new tool is the means to extract, via regression analysis,
the cooperativity factor for binding by a pair of proteins once the
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individual protein–site Kd's have been determined. This involves
holding the concentrations of a labeled oligo carrying the two co-
operating binding sites and one of the proteins constant, while mea-
suring cooperative complex formation as the other protein concentra-
tion is varied. Armed with the cooperativity factor and the two
individual Kd's, binding behavior can be predicted and compared over
the full concentration range of each interacting species.

We also provide modifications to these methods that extend their
applicability in special cases. First, in cases where contaminating DNA
binding proteins co-purify with the specific protein being studied, it is
often advantageous to include non-specific DNA in the experiments
used to measure the Kd, which reduces significantly the inaccuracy that
can result from these contaminating proteins competing for binding to
the labeled oligo. We describe the method and give equations for re-
gression analysis to find the specific Kd and the non-specific Kd along
with the active protein concentration. Second, we provide a means to
extract both Kd's and the cooperativity factor (as parameters in re-
gression analysis) for cases where only one Kd can be measured di-
rectly, which may occur when one cooperating protein binds very
weakly on its own. This requires simultaneously measuring both
ternary complex formation and the accompanying single-protein com-
plex as the weakly binding protein's concentration is varied.

We provide a summary of the main formulae used in this paper,
along with their applications in the methodology developed here, in
Fig. S1.
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